
J b l u d  t i " ( i i  (L9Y61 , o /  1 2 7 . p ~  117 138 

Copyright C, 1996 C nmhridge University Ptcss 

117 

Mechanics of collisional motion of granular 
materials. Part 4. Expansion wave 
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(Received I March 1995 and in revised form 5 November 1995) 

The problem of expansion into a vacuum of a semi-infinite layer composed of 
chaotically moving inelastic rough spherical particles is solved analytically. A variant 
of the matched asymptotic expansion scheme is used to obtain a matched composite 
solution, which is valid for both small and large times in the wave head, wave tail and 
intermediate domains of the disturbed part of the layer. 

The effects of granular initial energy and particle collisonal properties on their 
hydrodynamic velocity, temperature, density and pressure are studied in the limit of 
low initial density of the granular gas. The total granular mass, M, within the disturbed 
region was found to change with time as log t .  This is in contrast with the comparable 
classical result M - t obtained for conservative (molecular) gases. This logarithmic 
dependence stems from the influence of kinetic energy losses, which reduce the granular 
temperature and speed of sound in the wave head region. 

The ultimate escape energy and momentum (i.e. those achieved for long times by the 
expanding part of the layer) are shown to be finite quantities, dependent on the particle 
restitution coefficient, roughness and the initial granular temperature. The estimated 
mass of the escaping part of the layer, calculated here for dilute gases, serves as an 
upper bound on this quantity for all (also dense) comparable granular gases. This mass 
is determined by the collisional losses, as embodied within the particle restitution and 
roughness coefficients. 

1. Introduction 
Granular materials are frequently met in Nature and various industrial, geological 

and environmental applications. Products of modern chemical, food, pharmaceutical 
and agricultural industries often come in the form of grains or powders. Modelling of 
moving powder and granular materials is thus an important problem in various 
technological processes. Although people have long been using these materials (e.g. 
sand), the cumulative behaviour of moving grains is still not well understood. They 
may either move like solids or exhibit a complicated rheological liquid-like behaviour. 

The physical principles governing the motion of granular materials depend upon the 
interparticle forces. The motion of densely packed granules is governed mainly by the 
Coulomb frictional forces. On the other hand, collisional motion is affected by the 
particle impacts. In several cases (e.g. in shear-induced motion) both types of motion 
may take place simultaneously. When modelling granular flows, domains where each 
type prevails, as well as the boundary separating them, are determined during the 
solution (Zhang & Campbell 1992). 

The laws governing the thermodynamic state of a moving granular material depend 
on the type of granular motion. For example, the granular temperature distribution 
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(T) ,  is affected by different factors in shear-induced and vibrofluidized flows. In the 
former flows T is governed mainly by the kinetic energy exchange between the layers 
of granules moving with different average velocities. In the vibrofluidized motion the 
granular temperature is determined by the work performed on the granular system by 
the moving vessel. 

In all granular flows both the thermodynamic state and the hydrodynamic properties 
are affected by the kinetic energy losses during particle collisions. This is the main 
factor distinguishing the behaviour of granular (non-conservative) systems from that 
of molecular (conservative) systems. In particular, no thermodynamic equilibrium may 
exist in granular systems, save in the trivial case of motionless particles (zero granular 
temperature). As such, the hydrodynamic collisional state is maintained by external 
agitations. The present series of studies is devoted to modelling the vibrofluidized 
motion of granular materials, where this agitation is effected by interactions between 
a vertically vibrating vessel and particles falling in a gravity field. 

Collisional (vibrofluidized) granular motion is interesting from several practical 
points of view (Chlenov & Mikhailov 1972; Gutman 1968; Roberts 1984). First 
experimental studies demonstrated that the major part (if not all) of the layer moves 
as a single plastic block (Bachmann 1940; Kroll 1954; Gutman 1976). This 
phenomenon has formed the basis for a model which ignores relative particle motion 
(granular temperature) within this apparently solid block. This motion, however, is 
responsible for several important phenomena, including segregation of different 
particles (Ahmad & Smalley 1973) and circulative particle motion (Savage 1988). 

Goldshtein et al. (19954 showed that vibrofluidized granular systems are 
characterized by interacting transverse and compression-expansion waves, which 
propagate across the layers. These waves generate rapid collisional motion of granules 
which leads to their efficient mixing (Goldshtein et al. 1995b). The shock waves 
transform the bed into a gas-like state by supplying the energy of chaotic granular 
motion and creating collisional interactions. The expansion waves are responsible for 
conversion of chaotic granular kinetic motion into the translational (averaged) layer 
motion and the concomitant layer expansion. Therefore, investigation of these waves 
should be the basis of studies of vibrofluidization of granular layers. 

Two methods are normally used for description of the collisional motion of granular 
materials, namely particle dynamic simulation (PDS) and continuum models. In PDS 
models trajectories of many particles are simultaneously calculated for specified 
interparticle interactions with subsequent averaging to obtain the effective macroscopic 
information of interest in each specific application. The continuum models are aimed 
at developing macroscopic (hydrodynamic) equations, governing corresponding 
effective properties of moving materials (e.g. granular pressure, temperature, density, 
etc.). This is done on the basis of the gas kinetic theory, modified to account for the 
kinetic energy dissipation during particle impacts. The continuum methods are 
physically illustrative, allowing application of the classical solution methods of 
mathematical physics and fluid mechanics. They can adequately reflect the complex 
microscopic information (about granular size, shape, mechanical properties, etc.) at 
the macroscale (hydrodynamic) level of description. 

In recent years the vibrofluidization problem has been attacked using variants of the 
PDS models (Luding et al. 1994 a;  Luding, Herrmann & Blumen 1994 b ; Lan & Rosato 
1995). In particular, with a one-dimensional vibrofluidization model Luding et al. 
(1994a) showed that the layer expansion is proportional to (Aw)'/(l -e),  where A and 
w are the amplitude and the frequency of the vessel's vibrations and e is the granular 
restitution coefficient. This qualitatively confirms the result obtained in Part 2 of this 
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series (Goldshtein et al. 1995a) on the basis of a simple model of the wave propagation 
processes. Moreover. Lan & Rosato (1995) discovered periodic expansions and 
collapses of the bed occurring in phase with the vibrating vessel. This clearly may be 
attributed to the wave propagation, although this interpretation was not suggested by 
the authors. 

Wave propagation phenomena may be observed only in granular systems containing 
sufficiently many particles. Simulation of such systems on computers is still a 
cumbersome and sometimes formidable task. The observation of waves in the above 
studies was precluded by the relatively small number of particles included in the 
system. Therefore, simulations of Lan & Rosato (1995) only confirmed the results of 
Bachmann (1940) and Clement & Rajchenbach (1991) about the possibility of 
vibrofluidizing no more than 5-6 particle monolayers. In addition, the spatial 
periodicity boundary conditions used by Lan & Rosato (1995) implied that an infinitely 
wide layer was treated. This precluded observation of the transverse gravitational 
waves experimentally found in Part 2. 

The PDS methods are efficient provided that the number of particles and the 
collisional model adequately represent the system chosen for simulations. Verification 
of the PDS schemes may be done by comparing the numerical results with solutions of 
several simplified model problems, obtained by the continuum hydrodynamic 
equations. One such model problem is simple shear flow of a granular material in the 
absence of gravity and solid boundaries (Jenkins & Richman 1985, 1988; Lun & 
Savage 1987; Richman 1989; Lun 1991 ; Savage 1992; Lun & Bent 1994). Comparison 
of PDS solutions with the analytical results obtained for this flow for various 
collisional models enabled the understanding of the delicate energy balance within 
flowing granular materials. 

So far no such solutions have been obtained for unsteady flows, in particular for the 
wavy motion of granular materials. This article and Goldshtein, Shapiro & Gutfinger 
(1996) (Part 3 of this series) are aimed at obtaining analytical solutions of such model 
problems. These solutions may be used to understand, rationalize and interpret 
experimental and computational results on vibrofluidized motion of vertical granular 
layers. Namely. in Part 3 we considered the compression of a cold granular gas by a 
moving solid piston. In this paper we treat the complementary problem of the 
expansion of an agitated granular gas into particle-free space. 

Transformation of kinetic energy from the chaotic granular motion to directional 
motion (and vice versa) is the fundamental problem of wavy dynamics of granular 
materials. This problem has been studied in the classical gas dynamics theory (Courant 
& Friedrichs 1948). Such problems were neither treated nor even formulated for 
granular systems. The non-conservative nature of granular systems (kinetic energy 
dissipation) clearly exerts a strong influence on the kinetic energy transformation and 
dynamics of wave propagation. In particular, in Part 3 we have shown that only a finite 
part of a resting granular layer may be fluidized by a uniformly moving piston, no 
matter how large its velocity. This is in contrast with molecular gases where this part 
grows indefinitely with time. Similarly, the classical solution for expansion wave 
propagation in conservative systems cannot provide insight in the comparable physical 
processes occurring in the granular gas, even for an infinitesimally small energy 
dissipation rate. 

Vibrofluidization is a process occurring in the gravity field, which acts to bring the 
layer down to meet the vessel. In Part 2 we investigated periodic vibrational regimes 
where the layer spends most of the time in free flight. Accordingly, this problem could 
be formulated and treated during one vibrational cycle between two subsequent 
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contacts with the bottom. After the contact a shock wave propagates upwards, which 
is followed by the layer detachment from the bottom of the vessel and its free flight 
motion, until it again meets the bottom. The expansion wave propagates downwards 
during the layer free flight, immediately after the shock wave reaches the uppermost 
part of the layer. This process may be described in the absence of gravity, which enables 
the physics of the kinetic energy conversion in the presence of energy dissipation to be 
elucidated. Investigation of these processes is necessary for describing the total kinetic 
energy balance, averaged over many vibrational cycles, and hence the whole vibrational 
state. The latter more general treatment should include the gravity force, which will be 
done in a subsequent study. 

Shock and expansion wave propagation in molecular gases admits simple self-similar 
solutions (Courant & Friedrichs 1948). They serve as test problems for verification of 
more complicated analytical and numerical models (Moody 1990). The non- 
conservative nature of granular systems makes the problem of expansion wave 
propagation much more complicated than for molecular gases. From the mathematical 
point of view, dissipation of granular kinetic energy in flowing granular materials 
introduces a time scale which does not allow self-similar solutions to be obtained. In 
particular, a solution by series expansions in terms of a small parameter, characterizing 
weak energy dissipation, will not be uniformly valid for all times, and hence will be of 
limited use. 

The paper is organized as follows. In 92 the equations and boundary conditions 
governing the problem of expansion wave propagation are formulated. In 93 several 
asymptotic solutions in the wave tail, wave head and intermediate regions are 
developed, respectively. Matching of all these solutions provides analytical expressions 
for the velocity, pressure and density within the whole wave region, which are 
uniformly valid for all times. In particular, in the limit of vanishing kinetic energy 
losses our solution reproduces the classical self-similar expansion wave solution 
(Courant & Friedrichs 1948). Section 4 is devoted to a discussion on several calculated 
parameters and a comparison with the approximate theory described in Part 2 of this 
series. 

2. Problem formulation 
2.1. Euler's hydrodynamic equation 

Consider an ensemble of identical inelastic rough spherical granules of diameter CT, 
filling a semi-infinite spatial domain x > 0 separated from vacuum by a thin partition 
(see figure 1). The granules are assumed to be sufficiently heavy that the effect of the 
drag force (resulting from interactions with the surrounding granular gas) on their 
motion is negligible. At time t = O+ the partition is withdrawn and the gas expands into 
the vacuum along the x-axis (see figure 1). 

We describe the expansion process in the Lagrangian coordinates in terms of the 
mass variable h, defined by 

h = Im P(5)  a. (1) 

Neglecting gravitational force, as well as the gas thermal conductivity and viscosity, 
one can write the conservation equations for mass, momentum and energy in terms of 
h and the time variable t (Part 3 ) :  

(2 a-c) 
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0 h t = O  
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0 h 

t > O  

FIGURE 1. Schematic of the expansion wave propagation. 

where p = mn = vpp is the bulk mass density, m and pp  are respectively the mass and 
mass density of individual particles, n is the particle number density, v is the solid 
fraction (volume of solids per unit gas volume), u is the bulk velocity, E is the total 
energy of particle random motion, P is the hydrostatic granular pressure, and I is the 
volumetric sink term, accounting for losses of particle kinetic energy during collisions. 

The above equations require constitutive relationships for the granular pressure and 
the sink term, relating them to other hydrodynamic quantities and mechanical 
properties of the colliding granules. Additionally, modelling of flows of rough particles 
requires knowledge of the energy partition between the translational and rotational 
modes. 

In Part 1 of this series (Goldshtein & Shapiro 1995) constitutive relationships were 
found from the Chapman-Enskog solution of the Boltzmann equation, which was 
appropriately modified to include a fairly general particle collisional model. For dilute 
granular gases one can use this solution to express the gas hydrostatic pressure in the 
form 

P = inEa,. ( 3 )  

The coefficient at depends on the particle restitution coefficient e and roughness p. For 
the particular cases of perfectly rough particles ( p  = 1) a, = $, and for absolutely 
smooth spheres ( p  = - 1) at = $ (see Appendix A of Part 3). 

The sink term on the right-hand side of (2c) is given in Part 1, and for a dilute gas 
may be represented in the form 

where C,, C, are functions of particle restitution coefficient e, and roughness, /3 (see 
(A 4)-(A 11) of Appendix A of Part 3). 
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2.2. The speed of sound 
The speed of sound a, i.e. of propagation of infinitesimal disturbances through a dilute 
colliding granular gas, was calculated in Part 1 in the form 

( 5 )  

where y = 1 +;a# -CJ (6)  

P 
a2 = y-, 

P 

It follows from (5)  that for the evaluation of the speed of sound in a dilute granular 
gas one can use the standard expression for a polytropic gas with the adiabatic 
exponent y given by (6). Values of a, and C, appearing in (6) are defined by (A 1) and 
(A 5 )  of the Appendix of Part 3. 

2.3. Dimensionless problem formulation 
We now mark by a tilde the dimensional hydrodynamic properties. The corresponding 
non-marked letters denote dimensionless quantities defined using the initial density, Po, 
granular pressure, Fo, kinetic energy E,, and the associated speed of sound, Co, as the 
reference values, i.e. 

p = j 5 / p l 0 ,  P = PIP,, u = i i /do,  h = h"a2/m, t = f c2~0a"o /m.  (7a-e) 

Using ( 5 )  for the speed of sound, the equation of state (3) and (4), (7a-e), one can 
rewrite the hydrodynamic equations (2 a-c) in the dimensionless forms : 

- *  

" c ) - a ~  au lap ap ap -+-- = 0, p--yp- at at = -2qPp)3/2, (8 a-c) - _  
at ah' at y a h  

where 
6 = - ; c0 (2 /ya , ) l~~  

is the parameter characterizing kinetic energy losses. 
Continuous (i.e. without discontinuities of hydrodynamic properties) flows of 

molecular gases are usually described in the isentropic approximation. Moreover, for 
such flows the energy balance equation may be integrated to express the gas pressure 
in terms of the density (Courant & Friedrichs 1948). 

The entropy function may also be introduced for granular gases. However, owing to 
kinetic energy losses neither this quantity nor the energy of random granular motion 
are conserved. This precludes closed-form integration of the energy balance equation 
for granular gases. Nevertheless, we will utilize several integral forms of the energy 
equation which will prove helpful in the subsequent analyses. It may be shown that the 
expression 

Qt, h) = pY(t, h)lS2(t ,  h, PI,  (9) 

where 

obeys (8 c). Expressions (9) and (10) are generalizations of the entropy conservation 
integrals for the case of inelastically colliding particles. It is clear that in the special case 
of conservative gases (i.e. 6 = 0) the function C,(h) characterizes the initial entropy 
distribution in the system. These equations are further used in $3.3. 

Boundary conditions for (8) are formulated from the following considerations. 
Owing to the instantaneous pressure drop at t = h = 0 a rarefaction wave propagates 
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Wave head region (111) 

Mass coordinate, h 

FIGURE 2. Domains of the various solutions developed for the expansion wave problem. 

from the boundary into the granular gas. Those particles which the front has reached 
are disturbed from their initial state of hydrodynamic (but not thermodynamic) rest. 
The wave front travels with the speed of sound a in the undisturbed domain. Owing 
to granular energy dissipation only the density and (zero) bulk velocity within the 
undisturbed domain will be conserved, while the granular pressure, kinetic energy and 
speed of sound will diminish. In these conditions system (8) yields the following 
solution : 

p = 1, P = (1 u = 0, a = (1 +8t)-l.  (1 1 a-d) 

It follows from (1 1 d )  that the trajectory of the rarefaction wave front is 

In( 1 + 8t) 
6 

The granular flow resulting from the expansion of a granular gas into vacuum is, 
thus, contained within the region 0 < h < H(t)  (see figure 2). Since this region is 
adjacent to the undisturbed domain, the solution at the wave head h = H(t)  should 
obey conditions (1 1 a-d). On the other hand, at the wave tail, h = 0, the pressure is 
P = 0. 

3. Solution 

3.1. General 
We solve equations (8a-c) by employing a perturbation method (Van Dyke 1968), 
considering three separate asymptotic solutions : (I) Wave tail expansion (see $ 3.2), (11) 
intermediate expansion far from the boundaries (53.3) and (111) wave head expansion 
(53.4) (see figure 2). In $3.5 these separate solutions will be combined into a single 
matched composite solution. 
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3.2. Wave tail asymptotic solution 
In the absence of granular energy dissipation (conservative gasses, 6 = 0), problem 
(8a-c) has the following self-similar solution (Courant & Friedrichs 1948): 

h 
pc = $ / ( Y + l )  , P, = p;, u, = - U ( 1  - L$-l)’(Y+l)), c =  -, (I  3 a-d) 

t esc 

where 

is the dimensionless velocity of a gas escaping into vacuum. One can expect that in the 
close vicinity of the wave tail (h << I), where pressure P and density p are small, the 
effect of the sink term appearing on the right-hand side of the energy conservation 
equation (8c) is negligible and the expansion of the granular gas differs slightly from 
that of the conservative gases described by (13u-d). Bearing in mind the above 
reasoning, we seek a small-coordinate (h  4 1 )  expansion in the form 

pT =p$)+p$)+  ..., uT = u‘,o)+u$)+ ..., P,  = P$)+P$)+ ..., (14a-c) 
where 

p$)/p$’ << 1 ,  u$)/u$) << 1 ,  P‘,o’/P$’ << 1, ... . ( 1  5 a-c) 
A more accurate estimation of the validity range of expansions (14), where ( 1  5 a-c) 
hold, is given below. 

Substituting (14a-c) into 8(a-c) and using (15) one finds that (8a, b) for the leading 
terms are unchanged and identical to those of the conservative gas, whereas (8 c) adopts 
the form 

Analysis of this equation shows that for h 4 1 (at the wave tail) p$? 4 1 ,  P$? 4 1. 
Therefore its right-hand side is much smaller than the left-hand side and may be 
neglected. We thus obtained that the leading-order terms in (14a-c) satisfy the 
equations for the conservative gas (albeit with y = y(e7 p)). Consequently 

T pc, u$) = u,, P p  = P e7 ( 1 6 U-C) p(o)  = 

where pc, u,, P, are given by the (1 3 a-c). U,,,, given by (13 e), is the escape velocity of 
the granular gas, where the influence of the granular collisional properties is embodied 
within the specific heat ratio y = y(e,p). Physically this coincidence is explained by 
noting that at the initial moment the outermost granules (wave tail) instantaneously 
escape into vacuum without kinetic energy losses. 

Substituting (13 a-cE(16a-c) into (8a-c) and using the standard perturbation 
technique (Van Dyke 1968), one obtains after some algebraic manipulations the first- 
order correction of the wave tail asymptotic solution in the form 

(17a, b) 
P$) = hy2yi()’+l)(Ap + B, In t) ,  (17c) 

A ,  = ?A,, B, = yB,-26, (18a7 b) 

pT (1) - - he / ( ?  +l) ( A,+ B,In t ) ,  .$) = h < ( y - l ) / ( y + ’ )  (A,+B,lnt), 

where 

1 B,, BU = --A,, 1 y + l  
Y P  2Y Y 

A = - - A  ___ 
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I t  follo\vs I'rcim ( 17 LI ( a ) ,  ( 18 LI ~ f ' ) ,  (13 a-- c) and ( 1  6a-c) that straightforward 
coordinate expansions (14tr-c) satisfy conditions (1.5~-c) for h Q 1 .  Moreover, since all 
coefficients in (18) are proportional to S, conditions (1Sa-c), require that h8lnt 4 1. 
Therefore, the domain in which the solution (17) is valid diminishes with time. 
Convergence of the series ( 1 4 ~ 1 ~ ~ ~ )  is discussed in the following section. 

3.3. In terrnediate asymptotic solution 
Here we construct an approximation of the wave solution valid for large times. 
Consider an arbitrary material point within the disturbed range. Under the action of 
the gas pressure gradient, directed from the head to the tail of the expansion wave, the 
particles will accelerate and the energy of their random motion will transform into the 
energy of their average motion. Solution (1 3 a-d) predicts that the hydrodynamic 
velocity of the conservative gas approaches its large-time limit. This is the speed of 
escape 17&) which is independent of the coordinate h. On the other hand, within the 
granular gas, dissipation of the granular kinetic energy obviously leads to a non- 
uniform large-time finite particle velocity U " ( h ;  S), that is 

lim u( t ,h ;S )  = U " ( h ; 8 )  
t - I  

However, as the parameter 8, which characterizes the intensity of the dissipation 
process. vanishes, the above limiting value reduces to ti,,q,, i.e. 

C."Oz; 8) I < y = o  = ues(;(7). 

On the other hand, for any 8, the uppermost particles will have the same velocity as the 
conservative gas (with the same 7) .  that is 

C! ' - ( l z ;q lh="  = Ues(.(y). 

Subject to a posteriori verification, we assume that U' depends upon the single variable 
hS, i.e. 

U"(h;  8) = U"(hS). (19b) 

This assumption will be justified in 93.5 by matching of the solutions obtained in 
domains I, I1 and 111. 

I t  is now convenient to introduce new variables: 

.Y = hS, r = 1 + t6, ( 2 0 ~  b) 

in terms of which (8a-c) may be rewritten in the form 

This system is to be solved for Y >, 0 and r > 1, subject to the boundary conditions 

p = 1. 11 = 0, P =  Y 2  for x = h 7 ,  (22 a-c) 

obtainable from (1 1 a-c) combined with (12), ( ~ O U ,  b). 
Substituting the asymptotic spatial function UY(x) ,  given by (19b) into (21 a )  and 

integrating the resulting equation, one obtains the following large-time relationship for 
[);;(.x) : 
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p ~ ( 7 ,  X )  = 7-'n$(X) + 0(7-'), 7 + CC . 

Continuing the above procedure one can arrive at the following large-time (7 + 1) 
asymptotic expansions : 

(23 a> 
(23 6) 

(23 c) 

where the zero-order term Ug)(x) in the expansion (23a) represents the large-time, 
ultimate, hydrodynamic velocity U"(x) (appearing in (19b)) to be determined in the 
course of the solution. Upon substitution of (23a-c) into (21a-c), one obtains the 
following relations : 

U M ( 7 ,  x) = U$(x) + U&)(x) 7l-' + . . . , 
pZ(7, X )  = R ~ ) ( x )  7 + R$(x) ?Y+ . . . , 
PM(7, x) = n$(x) 7-7 + n&)(x) 7(1-3')'2 + . . . , 

imposed on the unknown coefficient functions in expansions (23). 
The above relations are insufficient for the determination of the six functions 

appearing in (23 a-c). Formally one can express any four functions in (23) in terms of 
the other two remaining functions; for example, one can express U$(x),  R&)(x), 
@$(x), RE(x) via ng)(x), UF(x) .  However, any attempt to determine the latter two 
functions directly from the boundary conditions at the wave tail and head involves the 
following difficulties. Expansions (23 b, c) predict that the particle density and pressure 
decrease as 7-l and 7-7, respectively. These solutions cannot be matched with (1 3 a-d) 
which are the leading solutions of the wave tail expansion (14u-c). Moreover, one can 
see that the leading term of expansion (23c) cannot satisfy boundary condition (22c). 
Indeed an attempt to satisfy this condition yields ng(x) - e("-')x, which is physically 
non-plausible since y - 2 < 0 and, hence, the above result predicts a monotonic 
pressure decrease with increasing h. 

Summarizing the above, one can state that the system (24a-d) cannot be 
mathematically closed by matching solutions (23a-c) with the wave tail and the wave 
head boundary conditions. In order to overcome this difficulty, in $3.4 we construct a 
matched composite solution. This solution will be inter alia matched with leading terms 
of (23 a-c). The validity range of this matched composite solution will be shown to be 
wide enough to allow determination of the function Ug) by a matching procedure. 
Then the leading terms in the density and pressure expansions will be respectively 
obtained from (24u) and the integral form of the energy balance equation (see 583.1, 

The leading term of the intermediate asymptotic solution (23 a-c) describes the final 
stage of evolution of the expansion wave, when almost all the energy of the chaotic 
granular motion is transformed into the energy of the average granular motion and is 
partly dissipated due to the non-conservative nature of particle collisions. At this stage 
of evolution each particle moves with a time-independent (albeit x-dependent) speed 
Um(x). Hence, (23u-c) is not valid in the wave head domain, where particles accelerate 
towards U". This genesis of the hydrodynamic motion, which for each particle begins 
after the rarefaction wave front reaches it, is treated in the following section. 

3.4). 
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3.4. Head wave asymptotic solution 
We now rewrite (9) and (10) in terms of the variables r. x. given by (20 a, b) :  

P(7, S) = /)"(7, X ) / s 2 ( T ,  S, [ I ) -  

S(7, X ,  p)  = Cq(-y) + 
These equations in combination with conditions (22a-c) imply that 

p(Y+l)'' (?/, X) dv. s: 
C,(.X) = 1. (26) 

Indeed, to demonstrate the above we rewrite ( 2 5 a )  in the following form: 

Since in the undisturbed domain x > Inr, the particle density p = 1 (see (22a ) )  (27a)  
becomes 

S(7, X, p) = C,( V )  + p r  - 1 + / I ( ' + ' )  ' ( i / ,  X) dt/. (27 b) 1:, 
Substituting S from (27b)  into (25a) ,  using boundary conditions (22a, c) and observing 
that the second integral on the right-hand side of (27b)  vanishes at the wave head 
7 = ex,  one obtains the required equation (26). 

Equations (26) and (27b)  yield 

The integral form of the energy equation represented by (25a) ,  (28) is valid within 
the whole disturbed domain, namely for 7 > e" (see figure 2). In the immediate vicinity 
of the wave head, i.e. where 

(29) 

(28) may be simplified. Using the fact that 1) is close to unity when c < 1, one can 
rewrite (28) in the following form: 

E ( 7 ,  .X) = 1 -ee.:/7 4 1. 

S(7, x) = 7.r 1 + f 4 7 ,  x) b(Y+l)'i (7,  s) - 11 1. (30) 

This equation together with ( 2 5 a )  is used below in the derivation of the wave head 

Consider the wave head domain defined by inequality (29).  In this region we seek a 
approximation. 

solution of the problem (21)-(22) in the form of the following Taylor expansions: 

p(7,x) = 1 +p: ' (T )c+p$) (7 )2+  O(C"), 

U ( 7 ,  X) = U G ' ( 7 ) C  + U E ) ( 7 ) c 2  + O(e3) ,  

(31 a) 

(31 h) 
with the pressure P(7, x )  expressed via the functions 4 7 ,  x), p(7, x) by (25a) and (30). It 
is obvious that the above solution forms satisfy conditions (22a-c) imposed at  the wave 
head. 

For the evaluation of the unknown functions p!$)(7), ~ ~ ' ( 7 )  (i = 1,2,  . . .) substitute 
expansions (31 a, b )  into (21 a,  b). (25a ) ,  (30) to obtain: 

first-order approximation 
u$'(7) = p:) (7 ) /7 ;  
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(33 a> 
d 2 

-p$)(7) = ; [@$)(T))~ - p g ) ( ~ ) ]  + 2Ug’(~), 
d7 

Functions us) ,  p g )  may be simultaneously excluded by adding (33 a, b). The resulting 
equation combined with (32) yields the following ordinary differential equation for 
p$) : 

the solution of which is 
p$)(7) = [y(y + 1)( 1 - c71’2),)]-1, (3 5 )  

where c is an arbitrary constant. 

given by (31a, b), (25),  (30) up to the terms of O(s): 
With p$) given above, one can rewrite the asymptotic solution for the wave head 

p(7 ,  x) = 1 + p g ) ( 7 )  s f  O(e2), 

u(7, x) = p 3 7 )  e/7 + O(e2), 
f‘(7, x) = [ 1 +p$)(7) ~ / T ] ~ ’ T - ~  4- o(s2). 

(364 

(36b) 

(36 c) 

The above scheme can be employed to obtain higher-order terms in expansions (31). 
However, solution (36 a-c) will prove sufficient for constructing the general matched 
composite solution of the problem, which will be done in 93.5. 

3.5. Matched composite solution 
Each of the separate asymptotic solutions (14), (23), (36), respectively obtained in 
$93.1, 3.2, 3.3, gives only a partical description of the hydrodynamic properties in 
the disturbed region. The goal of the following treatment is to describe variations of 
these quantities throughout the whole disturbed region by combining the above 
separate expansions into a single matched composite solution us, ps and P,. The 
solution for the velocity us is constructed in the following self-similar form (cf. (1 3 c)) : 

us(7, x) = U(x)( 1 - @-1)’(y+Q >, (37) 

where 9 is a self-similar variable 
ex- 1 

y=-. 
7-  1 

The functional form of (37) and (38) can be substantiated by the following observations. 
First, one can use definitions (204 b) to verify that (37), (38) satisfies boundary 
condition (22b) at the wave head. Secondly, in the limit of the conservative gas (i.e. 
S+O) 7 approaches the self-similar variable 5, given by (13d), which appears in the 
corresponding solution (13a-c). By virtue of (19b) and (20a), in the limit S+O x 
vanishes together with 6, and the following condition should, thus, be imposed: 

U(x)  + - V,,,(y) for x + 0. (39) 

In the limit 6+0 this condition provides a smooth transition between the matched 
composite solution (37), (38) for the dissipative granular gas and the wave tail solution 
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(16b). Thirdly, the same transition may be also seen to exist for x-0 by virtue of the 
choice of the self-similar variable '1. Indeed, it follows from (20a, b) and (38) that ?;I M 5 
for small x. Consequently, (37),  (38) together with condition (39) yield the zero-order 
term (16b), (13r) of the wave tail asymptotic expansion (14b). 

In the limit 7 - x (x-fixed) the matched composite solution (37), (38) reduces to the 
function V(x) ,  which, according to the intermediate expansion (23 a), is the terminal 
hydrodynamic particle velocity Ux(.v). 

Now we match the solution (37) with the wave head expansion (36b) at c +  0. Using 
the matched asymptotic expansions scheme (Van Dyke 1968) we determine U(x)  by 
imposing the following matching condition : 

uS(7, x) + q 4 ) ( 7 ) / ~  for c: --f 0, (40) 
where pg'(7) and t are defined by (35) and (29), respectively. After some algebraic 
manipulations (29), (35), (37) and (38) combined with condition (40) yield 

ex- 1 
U(X) = y(y - I )  e2"( 1 - ce"'2Y) 

The constant c appearing above, which determines also the wave head solution (35) 
and (36) is determined from the wave tail matching condition (39), which gives 

c =  1. (41 6) 
The above value of c together with (37), (38) and (41), completely determine the 
matched composite solution for the hydrodynamic velocity us : 

This expression constitutes the principal result of our analysis. The corresponding 
matched composite solution for mass particle density ps, may be derived from the 
above solution for us, mass conservation equation (21a) and condition (22a) for 
density p at the wave head: 

-_ - 1 + U'(x)(l-~/)(7- l)-(~-"(?+')- l)[g(y- 1) U(x)e"++(y+ l)(e"- 1) u'(x)], 
4 7 ,  

(43) 

1 

where 
d 

dx 
U(x) f - U(x)  (44) 

The matched composite solution for ps consists of three additive terms, appearing on 
the right-hand side of (43). It may be shown that the first of them represents the wave 
head asymptotic solution (36a ) ,  the second the intermediate solution (23 b), and the 
third the wave tail solution (14a). The sum of the second and third terms provides the 
first-order contribution with respect to the small parameter c: in the asymptotic 
expansion given by (35) and (36a). 

The last step in the derivation of the matched composite solution is calculation of the 
granular pressure P,. This may be performed after substitution of (43) into relations 
(25a), (28). However, the final expression for P, obtained in such a way is complicated. 
Instead, we perform these calculations using a less accurate but simpler and more 
convenient expression for the density ps. Towards this goal we discard the last term in 
(43), thereby obtaining 

p , (7 ,  x) = [ 1 + V(x) (7  -ex)]-'. (45) 
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(46) S(T, x, p,) = ex + - [ U'(x)]-'[ 1 - p i ~ - ~ ) / ~ ( 7 ,  x)] . 

The above expression together with relation (25a) yield the following approximation 
for the pressure P,: 

where p , (~ ,  x) given by (45). 
The approximate solutions for the density and pressure given by (45)-(47) satisfy the 

boundary conditions at the head wave and give the leading terms of the intermediate 
asymptotic solution (23b, c). However, they do not accurately reproduce the leading 
term (13a, b) of the wave tail asymptotic solution (14~1, b), since the term responsible 
for the latter solution was neglected in (43). The region in which the wave tail 
asymptotic solution is valid diminishes with time (see the restrictions imposed on this 
solution at the end of $ 3. l), while the range of applicability of the approximation (45) 
for density ps and, consequently, approximation (46), (47) for pressure Ps grows with 
time (see figure 2). 

2 

Y-1 

PAT, 4 = pX7,  X ) / S 2 ( T ,  x, PSI7 (47) 

4. Results 
Analysis of solution (42) and (43) shows that it satisfies the governing equations (8) 

both for small and large times, as well as the boundary condition imposed on the 
hydrodynamic properties for all times. In that sense one can consider this solution to 
be uniformly valid for all times. In particular, the intermediate domain, the solution for 
which was developed in $3.3 for apparently long times, in fact does not exist for small 
times. Indeed one can see that at the limit o f t  4 1, and hence x 4 1, (42) simultaneously 
reproduces both the wave tail and the wave head solutions. This is also shown in figure 
2, where the wave head and the wave tail domains are shown to overlap. Physically this 
overlap is explained by the observation that for any given 0 < e < 1 and 1 p I < 1, there 
exists a short time period where the kinetic losses do not exert any significant influence 
on the flow regime. 

Solutions (42) and (43) may be used to calculate the curves $,,(T, x) = C,, = const, 
$ u ( ~ , ~ )  = C, = const, on which the velocity and density are conserved. These curves 
for smooth particles in the (x, T )  plane are plotted in figure 3 (a ,  b). One can see that for 
small 7 these curves coincide with the dashed straight lines of the classical solution 
(13u-d). These curves are plotted here in x, t coordinates using the expressions 

esc P I. (49) c, = u [1 - c ( Y - 1 ) / 2  

The solid lines in figure 3 (a, b) exhibit the effect of inelastic particle collisions, which 
is embodied in the appropriately deformed dimensionless time and mass coordinates 
x and T via parameter 6. Note that for smooth particles the adiabatic exponent y is 
independent of restitution coefficient and equals g. 

During a relatively short initial period the characteristic lines for non-conservative 
granular gases coincide with those for molecular gases. This time period is inversely 
proportional to 8;  in particular, for almost conservative granules this period is long, i.e. 
of order 6-1 = (1 -e)-'. Therefore, for any particle restitution coefficient there exists an 
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FIGURE 3. ( a )  Curves of constant density (4, = C, = const) for granular gas of smooth spheres 
( p  = - I), drawn in the dimensionless time-mass coordinates. Dashed straight lines : classical solution 
(13a), e = 1. Curved lines: solution (43) 0 < e < 1. (b) As (a)  but for constant velocity ($, = C, = 
const). Dashed straight lines: classical solutjon (13c), e = 1. Curved lines: solutjon (42) 0 < e < 1 
plotted for C,  = 2[1 -Cjy-l)'z]/(y-l), for Cf, = 1, f and +. 

initial (physical) time period during which the curves p = const are straight lines. In the 
course of time these curves progressively deviate towards larger times. For large times 
7 (and x) these curves behave like exponents (see (50) below). This deviation is 
explained by the dissipation of the granular kinetic energy with the concomitant 
diminution of the speed of sound. 

For molecular gases the characteristics serve as curves on which both density and 
velocity are conserved. In contrast, the curves $,,,Qu for the granular gases are 
different. Figure 3(b) shows the curves $,, plotted for constant values of u = C,, 
corresponding to the values of C,, shown in figure 3(a ) .  These curves differ markedly 
from the lines #, = const shown in figure 3(a). In particular, for long times $, have 
asymptotes x = x,,,. The value of x,,, decreases with increasing C,. That is, all 
particles with mass coordinates I > x,,,, cannot reach velocities larger than the 
corresponding C,  = U(xmaX), where U is given by (41 a, h). It also follows from the 
above formulae that x,,, - a as C, -to. Therefore, the limiting curve C, = 0 
corresponding to the wave head is the only one that has no asymptote. 

The data shown in figure 3(a, 6) are valid for smooth particles, in which case the 
result may be represented in a universal form, i.e. by the same curves for all values of 
e.  In a more general situation, i.e. where I p 1 < 1, the specific heat ratio y = y(e, /3) and, 
hence, each set of particle collisional properties, requires a separate plot. Nevertheless, 
for large times one can use the approximate form (45) of the solution for ps  to calculate 

in the form 

with C, E (0, I ) ,  on which the density p s  of the granular gas is conserved. In contrast, 
no curves exist on which the granular pressure is conserved. In particular, in (49) P, 
decreases with x as (see (4547)): 

where U ( s )  is given by (41a, b) and (44). 
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FIGURE 4. Dependence of the escape velocity U,,, on particle collisional properties. 

Figure 4 shows the dimensionless escape velocity U,,, = 2/(y-  1) of a granular gas 
into vacuum ZIS. particle roughness for several values of the restitution coefficient e.  The 
curve for e = 1 describes monotonic change of U,,, from U,,, = 3 for smooth to 
U,,, = 6 for rough particles. The effect of particle kinetic energy losses is still implicitly 
embodied within the adiabatic exponent y, which is present both in the right-hand side 
of the expression for U,,, and in the speed of sound (5 )  and (6) normalizing it (see (7 c)). 
This speed of sound decreases with decreasing e (Part 1). In addition, with decreasing 
e (increasing restitution coefficient) the granular random kinetic energy is redistributed 
in favour of the rotational degrees of freedom, which leads to a decrease of the 
adiabatic exponent y and the concomitant increase of U,,, (see the curves for 
e = 0.7-0.9). Thermodynamically, this redistribution is equivalent to an increase of the 
gas specific heat and, hence, internal energy, which is retrieved as the kinetic energy of 
the escaping (freely flowing) gas. 

The effect of kinetic energy losses on U,,, is manifested in a two-fold manner: by 
means of redistribution of the granular temperature between the rotational and 
translational degrees of freedom (via at in (6)) and by direct losses, associated with the 
work of the pressure forces, via C, in (6) (see Part 1). These losses are relatively low 
for e - 1. In these cases U,,, decreases monotonically, mainly due to a, increasing with 
p where p decreases from I (see figure 1 of Part 1). One should also note that for lower 
e, a, depends weakly on p. In this case y is affected mainly by C,, the effect of which 
is to increase y with increasing frictional losses ( p  decreasing from 1). This is shown 
in figure 4 (see curve for e = 0.7). 

We next calculate the ultimate escape kinetic energy and momentum of the 
expanding layer, i.e. the kinetic energy and momentum of the hydrodynamic motion, 
gained by the accelerating particles 

where the asymptotic long-time value (supremum) of u is given by (41a, b). Figure 
5 (a, b) presents the respective dimensionless quantities 

k ,  = Em/e , , ,  k ,  = M"/U,,,. ( 5 3 4  b) 
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FIGURE 5. Ultimate escape energy and momentum us. particles roughness: (a) normalized energy 

k,<; ( b )  normalized momentum k,,r. Data for p = - 1  : m, e = 0.9: A, e = 0.8; 0 ,  e = 0.7. 

The upper curves, obtained for elastic particles (e = 1) show that k,, k ,  + GO at two 
extremes P-k I ,  corresponding to the conservative gas. In these cases the layer 
retrieves infinite kinetic energy, i.e. all particles are ultimately involved in the expansion 
process with the same velocity We,,,. Particle roughness induces kinetic energy losses, 
thereby yielding finite values of k,. k,, (of elastic particles), which reach their minima 
at about /3 = 0.2. 

The curves shown in figure 5(a,  b) for inelastic particles (e < 1) exhibit the 
contribution of restitution coefficient to the overall kinetic energy losses, which 
combine with those stemming from the roughness to yield still lower values of k,, k,. 
These curves are plotted within the validity range of the hydrodynamic solution (Part 
l) ,  i.e. terminate at minimal /I calculated for the respective restitution coefficient e. 

For smooth particles CP = - 1 )  one can obtain the following explicit analytical 
expressions for E x ,  M" : 

E" = 1.38326/6, M" = 1.871 13/6, (54a, b) 

(55 )  

where S (for smooth particles) reduces to 

6 = (4n/ 1 5) l i2(  1 - e'). 
In figure 5 (u, b)  k,, k ,  calculated with these expressions are shown as single points. 
One can see that the smooth particles attain a larger ultimate kinetic energy than their 
counterparts, characterized by intermediate roughness ,8 - 0, where the losses are 
maximal. One should note, however, that the kinetic energy (540) and momentum 
(54b)  are less than those obtained for absolutely rough particles. This may also be seen 
in figure 6, comparing the escape energy E" for the two extremal cases /3 = k 1. Rough 
particles have more active internal degrees of freedom (rotational and translational) 
than smooth particles, characterized only by translational modes. Therefore, the 
relative amount of kinetic energy lost by the smooth particles is larger, which leads to 
smaller Ex. 

Having obtained the ultimate escape values of momentum M" and energy E" of the 
freely expanding layer, one can calculate the effective dimensionless mass of the 
escaping part :t 

h,  = (M")'/2E". (56) 
i Strictly speaking, the total escaping mass is infinite, since all particles (for all h)  will ultimately 

gain a certain hydrodynamic velocity. However, for granules, characterized by large h this velocity 
is very small (decays exponentially with h). Therefore ( 5 2 ~ .  h) may be used to define an effective mass, 
which escapes with velocity 2E" j M "  . 
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FIGURE 7. Ultimate effective escape mass h,  us. particle roughness. Data for /3 = - 1 

W, e=0.9 ;  A, e=0 .8 ;  0,  e=0.7.  

This corresponds to the number of (packed) monolayers which effectively escape as a 
result of the expansion process. The corresponding dimensional mass is expressed by 
h,rn/w2. Figure 7 presents h,  us. particle roughness for several values of e. Clearly, the 
curve calculated for e = 1 tends to infinity for 1 /3 I --f 1, because in these limits the kinetic 
energy losses vanish. This curve and others fore < 1 (plotted in the domain of existence 
of the solution) have minima, corresponding to maximal losses at about p = 0.2. 
Observe that h, is independent of the initial granular temperature and determined only 
by the particle collisional properties. Specifically, for e = 0.9 about six monolayers of 
smooth particles and twelve monolayers of rough particles will escape. This agrees with 
the well known fact, reported in many studies, that no more than about six monolayers 
can be fluidized by vibrations (see, for example, Bachmann 1940; Kroll 1954; Gutman 
1976; Clement & Rajchenbach 1991). In contrast, in Part 2 we succeeded in achieving 
fluidization of thicker layers, through a specific choice of the vibrational parameters. 
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FIGURE 8. Dependence of escape energy of a granular gas of smooth particles on dimensionless 
time. E, exact solution (60); EcL, approximate solution (58). 

We wish to use the solution obtained above to quantitatively assess the validity of 
the approximate model developed in Part 2 for vibrated granular layers of smooth 
particles. According to that model the effect of the expansion wave is to instantaneously 
transform all the kinetic energy of the granular random motion at the wave head into 
the escape energy of purely translational motion: us = UeI,,, = O(Ee,7c(h))1'z. Using this 
assumption in the present circumstances of dilute gas. boundary conditions (22c) and 
definitions (200, b),  one obtains 

(57) E,,, = exp (- 2/18). 

Now one can calculate the total layer escape energy by integrating (57) over the 
disturbed region : 

where the wave head location H(t)  is related to T via (12). 
The exact value of E(t)  may be explicitly calculated from (42) in the form 

For smooth particles this equation can be rewritten using 2" = 0.9mG; (see definitions 
(7) and using y = 5/3) in the following form: 

E(T) = $jr7 [u,(T, x)12 dx. (60) 

Values of E, 8 and Ed, respectively calculated from (58) and (60), are plotted in figure 
8. For small times T < 7, E, exceeds E, with the reverse trend prevailing at larger times. 
This is explained by noting that at large times the escaping particles progressively 
accelerate (at e = 1 up to a velocity of about three times the speed of sound), as a result 
of the pressure continously exerted by the 'deeper' particles. This energy transfer 
mechanism is not accounted for in the simplified model of Part 2. At large times this 
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model yields the escape velocity and, hence, E, less than E. For large 7 the effect of the 
above energy transfer mechanism is to cause a significant difference between E, and E. 
Explicitly, at 7 --f co, Em = 3.07 E,“. 

At the wave head the present solution gives us = 0, whereas the model of Part 2 
yields us = U,,, = O(EeJ”. Since for small times, i.e. T < 7 ,  all of the disturbed region 
is close to the wave head, the total contribution of the latter velocities results in E, > E. 

One can see, that for smooth particles, the difference AE = E, - E depends on the 
dimensionless time t (see (7 e)) and particle restitution coefficient, which is embodied in 
6, given by (55) .  The e-dependence of AE is represented by the expression 

f l6 t ) /& = fl&t)/O.915 (1 - e2), 

wheref= (E,-E) 6 is the difference between the curves plotted in figure 8. For highly 
elastic particles (1 - e << 1) f is very small (of order 1 - e2), hence AE = O( 1). On the 
other hand, for inelastic particles f = O(1) and E,- E - 1/6. Therefore, for all e and 
t ,  AE = O(1). 

One can, thus, conclude that calculation of the escape energy using the assumption 
of instant conversion of the granular temperature into E, gives the right order of 
magnitude of that quantity, at least in the present model of a dilute granular gas. 
However, vibrated granular regimes considered in Part 2, were characterized by dense 
layers. Noting that for such layers kinetic energy losses are higher than in dilute gases, 
one can expect that for dense granular systems AE is less than the above estimation. 

The above considerations are also applicable to estimation of the mass of the 
escaping part of the layer. Indeed, for dilute systems this mass will be larger because 
they dissipate less granular kinetic energy. Therefore the values of the escaping 
granular energy, mass (and momentum) serve as upper bounds on the values which 
would prevail for denser granular systems. 

5 .  Discussion 
In this paper closed-form analytical solutions for the t- and h-distributions of the 

hydrodynamic velocity, granular pressure and temperature of an expanding granular 
layer are obtained. This solution enables evaluation of the effects of particle kinetic 
energy losses, as embodied within their collisional properties, on u, P and p. In the 
absence of these losses (e = 1 and I p 1 = 1) our results reproduce the well-known self- 
similar solution for a conservative (molecular) gas. The effect of kinetic energy losses 
is to yield finite values of the energy Em and momentum M“ gained by the freely 
expanding part of the layer. 

Solution of the problem of the expansion of a granular gas into a vacuum may be 
generalized to the case of moderate or high initial particle density p”,. The physical ideas 
underlying three asymptotic expansions, developed in 53, can also be applied to dense 
granular systems. This will require specification of a more general equation of state and 
the concomitant expression for the sink term (Part 3). In all cases, however, the 
functional dependences of the kinetic energy sink term and the granular pressure upon 
the granular energy are the same as those given by (4) and (3), respectively. All such 
solutions have one important common feature, namely that the ultimate escape energy 
Em of the infinite granular layer remains finite. 

Both the compression wave (Part 3) and expansion wave solutions have shown that 
the maximal possible fluidized mass constitutes about 6-12 particle monolayers. The 
exact amount of fluidized granules is controlled by the rate of kinetic energy 
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dissipation. which is determined by the particle collisional properties. These results 
were obtained for the circumstances where no wave interactions occur. This apparently 
corresponds to the vibrational regimes characterized by large frequencies and small 
amplitudes, where only a limited amount of kinetic energy may be pumped into the 
granular layer. 

The above finite values of the fluidized granular mass were obtained (both in Part 
3 and in this study) on the basis of a model which does not account for gravitation. In 
fact, the role of the gravitational force in vibrofluidization of vertical granular layers 
is to bring the granules in contact with the bottom of the vibrating vessel. This factor 
is neither always efficient nor controlling the vibrofluidized state. Indeed, in order to 
achieve granular agitation one needs to increase the intensity (acceleration) of the 
vibrating vessel (Chlenov & Mikhailov 1972; Gutman 1968; Roberts 1984). However, 
with increasing acceleration the period of contact with the bottom (during which the 
kinetic energy is supplied) decreases: the layer meets the bottom once per several 
vibrational cycles. This means that the layer spends most of the time in the free flight, 
during which most (if not all) the kinetic energy is lost by dissipation. From this point 
of view more efficient vibroff uidization may be achieved by vibrational equipment 
(vibro-mills and vibro-mixers) with closed vessels, where the vibrated material impacts 
both with the top and the bottom of the working canister. In these cases the frequency 
of impacts is controlled by the amount of material in the canister and the vibrational 
regime chosen. For the high acceleration regimes (above log)  typical for this 
equipment, the effect of the gravity force on the vibrational motion is small. 

In fact, vibrofluidization may even be achieved without gravity, i s .  in outer space. 
Other space-related applications of the wave propagation processes in granular 
materials will be considered in separate studies. 

The relatively small escaping mass (6-12 granular monolayers) may raise a question 
about validity of the hydrodynamic continuum model. One should note, however, that 
the extension of the physical granular system in a collisional state is larger because the 
average distance between the granules may well exceed their diameter, especially for the 
dilute granular gas considered here. Additionally, one may be encouraged by the 
agreement between the above estimate and the fluidized portion of the granular layer 
observed in several experimental studies (Bachmann 1940; Clement & Rajchenbach 
199 1). An unequivocal conclusion about the applicability of the hydrodynamic 
solution to systems including such a small amount of particles can only be drawn on 
the basis of comparison with the results of particle dynamic simulations. Unlike the 
complicated simulation of real physical or industrial systems, the rigorous solutions of 
the model problems obtained here and in Part 3 may provide a basis for such a 
comparison. 

The hydrodynamic solutions obtained in this paper and in Part 3 may be used to 
verify the accuracy of PDS and to choose the necessary amount of particles to be 
included in the system. On the other hand, a comparison between the continuum and 
PDS solutions is useful for delineating the applicability limits of the former methods 
in cases where the existence of the hydrodynamic solution is questionable. Moreover, 
the exact hydrodynamic solutions constitute important milestones necessary for 
development and verification of computational techniques, aimed at describing 
physical experiments or industrial processes involving granular materials. 
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